Local Distributed Verification

A. Balliu, G. D’Angelo, P. Fraigniaud, and D. Olivetti

CNRS and University Paris Diderot
GSSI L’Aquila
Classify problems according to their difficulty, i.e., build a complexity theory in the distributed setting.

Build a hierarchy of complexity classes in the context of the LOCAL model.
The distributed network is represented by a graph.
Local Model

- The distributed network is represented by a graph.
- Synchronous model.
Local Model

- The distributed network is represented by a graph.
- Synchronous model.
Local Model

- The distributed network is represented by a graph.
- Synchronous model.
The distributed network is represented by a graph.

Synchronous model.

Equivalent to a model where each node sees the network up to distance \(t \).
Local Model

- The distributed network is represented by a graph.
- Synchronous model.
- Equivalent to a model where each node sees the network up to distance t.
- The time complexity of a local algorithm A is determined by the range t that it needs to explore.
Local Model

- The distributed network is represented by a graph.
- Synchronous model.
- Equivalent to a model where each node sees the network up to distance t.
- The time complexity of a local algorithm \mathcal{A} is determined by the range t that it needs to explore.
- We want t to be constant.
Decision Problems

- Decision Problems: the aim is to decide whether a global input instance satisfies some specific property.
Decision Problems

- Decision Problems: the aim is to decide whether a global input instance satisfies some specific property.
- Each node:
 - gathers its local information from the network;
Decision Problems

- Decision Problems: the aim is to decide whether a global input instance satisfies some specific property.
- Each node:
 - gathers its local information from the network;
 - perform some local computation;
Decision Problems

- Decision Problems: the aim is to decide whether a global input instance satisfies some specific property.

- Each node:
 - gathers its local information from the network;
 - perform some local computation;
 - output its local decision:
Decision Problems

- Decision Problems: the aim is to decide whether a global input instance satisfies some specific property.
- Each node:
 - gathers its local information from the network;
 - perform some local computation;
 - output its local decision: "accept"
Decision Problems

- Decision Problems: the aim is to decide whether a global input instance satisfies some specific property.

- Each node:
 - gathers its local information from the network;
 - perform some local computation;
 - output its local decision: "accept" or "reject".
Decision Problems

- Decision Problems: the aim is to decide whether a global input instance satisfies some specific property.

- Each node:
 - gathers its local information from the network;
 - perform some local computation;
 - output its local decision: "accept" or "reject".

\[\text{global_output} = \bigwedge_{v \in V} \text{local_output}(v). \]
Decision Problems

- Decision Problems: the aim is to decide whether a global input instance satisfies some specific property.

- Each node:
 - gathers its local information from the network;
 - perform some local computation;
 - output its local decision: "accept" or "reject".

- \(\text{global_output} = \bigwedge_{v \in V} \text{local_output}(v). \)
Decision Problems

- Decision Problems: the aim is to decide whether a global input instance satisfies some specific property.

- Each node:
 - gathers its local information from the network;
 - perform some local computation;
 - output its local decision: "accept" or "reject".

\[\text{global_output} = \bigwedge_{v \in V} \text{local_output}(v). \]
Example: Proper Coloring

- Node input: a color.
- Each node checks the colors of its neighbors.
Example: Proper Coloring

- Node input: a color.
- Each node checks the colors of its neighbors.

Local Decision (LD) is the class of distributed languages that can be locally decided [NS ’95].
LD Class

LD is the class of all distributed languages \mathcal{L} for which there exists a local algorithm A satisfying the following: for every input instance (G, x),

$$(G, x) \in \mathcal{L} \Rightarrow \forall id \in ID(G), \forall u \in V(G), A(G, x, id, u) = \text{accept}$$

$$(G, x) \notin \mathcal{L} \Rightarrow \forall id \in ID(G), \exists u \in V(G), A(G, x, id, u) = \text{reject}$$
Verification Problems

- Verification problem: the aim is to **verify** whether a global input instance satisfies some specific property.
Verification Problems

- Verification problem: the aim is to verify whether a global input instance satisfies some specific property.
- Each node:
 - has a certificate, unbounded size and independent from the id assignment;
Verification Problems

- Verification problem: the aim is to **verify** whether a global input instance satisfies some specific property.
- Each node:
 - **has a certificate**, unbounded size and independent from the id assignment;
 - gathers its local information from the network;
Verification Problems

- Verification problem: the aim is to **verify** whether a global input instance satisfies some specific property.
- Each node:
 - **has a certificate**, unbounded size and independent from the id assignment;
 - gathers its local information from the network;
 - perform some local computation;

\[\text{global}_{-output} = \bigwedge_{v \in V} \text{local}_{-output}(v) \]
Verification Problems

- Verification problem: the aim is to **verify** whether a global input instance satisfies some specific property.

- Each node:
 - **has a certificate**, unbounded size and independent from the id assignment;
 - gathers its local information from the network;
 - perform some local computation;
 - output its local decision, that is ether "accept" or "reject".
Verification Problems

- Verification problem: the aim is to **verify** whether a global input instance satisfies some specific property.
- Each node:
 - **has a certificate**, unbounded size and independent from the id assignment;
 - gathers its local information from the network;
 - perform some local computation;
 - output its local decision, that is either "accept" or "reject".
- $\text{global_output} = \bigwedge_{v \in V} \text{local_output}(v)$.

Similar to PLS, but with id-independent certificates.
Verification Problems

- Verification problem: the aim is to **verify** whether a global input instance satisfies some specific property.
- Each node:
 - **has a certificate**, unbounded size and independent from the id assignment;
 - gathers its local information from the network;
 - perform some local computation;
 - output its local decision, that is either ”accept” or ”reject”.

\[
\text{global}_\text{output} = \bigwedge_{v \in V} \text{local}_\text{output}(v).
\]

- Similar to PLS, but with id-independent certificates.
Example: is the given graph a tree?

- Not locally decidable, but locally verifiable.
Example: is the given graph a tree?

- Not locally decidable, but locally verifiable.
- Choose a node to be the root.
Example: is the given graph a tree?

- Not locally decidable, but locally verifiable.
- Choose a node to be the root.
- Certificate of a node v: its hop-distance from the chosen root.
Example: is the given graph a tree?

- Not locally decidable, but locally verifiable.
- Choose a node to be the root.
- Certificate of a node v: its hop-distance from the chosen root.
Example: is the given graph a tree?

- Not locally decidable, but locally verifiable.
- Choose a node to be the root.
- Certificate of a node v: its hop-distance from the chosen root.

\[\begin{array}{cccc}
0 & 1 & 1 & 2 \\
2 & 3 & 3 & 3 \\
3 & 4 & & \\
\end{array} \]

- *Nondeterministic LD (NLD)* is the class of distributed languages that can be locally verified [FKP ’11].
NLD Class

NLD is the class of all distributed languages \mathcal{L} for which there exists a local algorithm A satisfying the following: for every input instance (G, x),

1. $(G, x) \in \mathcal{L} \Rightarrow \exists c \in C(G), \forall \text{id} \in \text{ID}(G), \forall u \in V(G), \quad A(G, x, c, \text{id}, u) = \text{accepts}$

2. $(G, x) \notin \mathcal{L} \Rightarrow \forall c \in C(G), \forall \text{id} \in \text{ID}(G), \exists u \in V(G), \quad A(G, x, c, \text{id}, u) = \text{rejects}$
NLD is the class of all distributed languages \(\mathcal{L} \) for which there exists a local algorithm \(A \) satisfying the following: for every input instance \((G, x)\),

- \((G, x) \in \mathcal{L} \Rightarrow \exists c \in \mathcal{C}(G), \forall \text{id} \in \text{ID}(G), \forall u \in \text{V}(G),\ A(G, x, c, \text{id}, u) = \text{accepts}\)
- \((G, x) \notin \mathcal{L} \Rightarrow \forall c \in \mathcal{C}(G), \forall \text{id} \in \text{ID}(G), \exists u \in \text{V}(G),\ A(G, x, c, \text{id}, u) = \text{rejects}\)

\(L \in \text{NP} \) if there is a polynomial time algorithm \(A \) such that,

\[x \in L \iff \exists c \text{ s.t. } A \text{ accepts } x \text{ with } c. \]
More about NLD

NLD is the class of all problems closed under lift [FKP ’11].

- Let \((G, x)\) and \((G', x')\) be two input instances.
- \((G', x')\) is a lift of \((G, x)\) if there exists a function \(f\) such that:
 \[f : V(G') \rightarrow V(G) \]
 preserving the local view of each node.
Let \mathcal{L} be a language in NLD.

If $(G, x) \in \mathcal{L} \land (G', x')$ is a lift of (G, x), then $(G', x') \in \mathcal{L}$.

\[G \quad G' \]

\[
\begin{array}{c}
C_1 \\
C_3 \\
C_2
\end{array}
\]

\[
\begin{array}{c}
C_1 \\
C_3 \\
C_2
\end{array}
\]
Goal

- Build a hierarchy of complexity classes in the distributed setting.
- Distributed hierarchies in other setting:
 - [Reiter ’14] in the context of automata;
 - [FFH ’16] in a model inspired by the CONGEST one.
Complexity Classes

- LD = $\Sigma^0_{loc} = \Pi^0_{loc}$ (similar to P in the sequential setting).
Complexity Classes

- LD = $\Sigma_{0}^{loc} = \Pi_{0}^{loc}$ (similar to P in the sequential setting).
- NLD = Σ_{1}^{loc} (similar to NP in the sequential setting).
Complexity Classes

- \(\text{LD} = \Sigma^\text{loc}_0 = \Pi^\text{loc}_0 \) (similar to P in the sequential setting).
- \(\text{NLD} = \Sigma^\text{loc}_1 \) (similar to NP in the sequential setting).
- \(\Sigma^\text{loc}_k \): An input instance satisfies a certain property in \(\Sigma^\text{loc}_k \) iff
 \[\exists c_1, \forall c_2, \ldots, Qc_k, \text{ all nodes accept.} \]
Complexity Classes

- LD = $\Sigma^l_{0} = \Pi^l_{0}$ (similar to P in the sequential setting).
- NLD = Σ^l_{1} (similar to NP in the sequential setting).
- Σ^l_k: An input instance satisfies a certain property in Σ^l_k iff
 $$\exists c_1, \forall c_2, \ldots, Qc_k, \text{ all nodes accept}.$$
- Π^l_k: An input instance satisfies a certain property in Π^l_k iff
 $$\forall c_1, \exists c_2, \ldots, Qc_k, \text{ all nodes accept}.$$
Complementary Classes

In a class:

A globally accepted input instance. A globally rejected input instance.

In a complementary class:

A globally accepted input instance. A globally rejected input instance.
Lever 0 of the Hierarchy

- **AND**: $|\{u \in V(G) : x(u) = 1\}| = 0$
- **OR**: $|\{u \in V(G) : x(u) = 1\}| \geq 1$
\(\Pi^1_{loc} \): The Role of the Last Universal Quantifier

- \(\Pi^1_{loc} \):
 \((G, x) \in \mathcal{L} \iff \forall c \text{ all nodes accept} \).

- LD:
 \((G, x) \in \mathcal{L} \iff \text{all nodes accept} \)
Π_{1}^{loc}: The Role of the Last Universal Quantifier

- Π_{1}^{loc}:
 $$(G, x) \in L \iff \forall c \text{ all nodes accept}.$$

- LD:
 $$(G, x) \in L \iff \text{all nodes accept}$$

- Problems that can be solved only if a specific node knows (an upper bound of) the size of the network!
Let f be a function and a and b two non-negative integers.
Let f be a function and a and b two non-negative integers.

A configuration in ITER consists in a path $P = L v R$ with a special node v (pivot).
Let f be a function and a and b two non-negative integers.

- A configuration in ITER consists in a path $P = LvR$ with a special node v (pivot).
- Nodes in L (resp., in R) are given as input $f, f^i(a)$ (resp., $f, f^i(b)$); to v is given in input f, a, b.
Let f be a function and a and b two non-negative integers.

- A configuration in ITER consists in a path $P = LvR$ with a special node v (pivot).
- Nodes in L (resp., in R) are given as input $f, f^i(a)$ (resp., $f, f^i(b)$); to v is given in input f, a, b.
- f is s.t. $f(0) = 0$ and $f(1) = 1$
Let f be a function and a and b two non-negative integers.

A configuration in ITER consists in a path $P = LvR$ with a special node v (pivot).

Nodes in L (resp., in R) are given as input $f, f^i(a)$ (resp., $f, f^i(b)$); to v is given in input f, a, b.

f is s.t. $f(0) = 0$ and $f(1) = 1$

An input instance is in ITER if and only if:
- $f^{|L|}(a) \in \{0, 1\}$ and $f^{|R|}(b) \in \{0, 1\}$
- $f^{|L|}(a) = 0$ or $f^{|R|}(b) = 0$
An endpoint node rejects only if it has in input something different from 1 or 0; otherwise accepts.

In this case, the left endpoint node rejects.
Nodes reject if they notice local inconsistencies.
\((G, x) \notin \mathcal{L} \Rightarrow \exists c \text { s.t. at least one node rejects.} \)

\(v \) rejects only if \(f|_L(a) = f|_R(b) = 1 \); otherwise accepts.

Certificate of node \(v \): un upper bound of the size of the network.
$(G, x) \in \mathcal{L} \Rightarrow \forall c \text{ s.t. all nodes accept.}$

Whatever certificate v has, it will never compute $f^{|L|}(a) = f^{|R|}(b) = 1$.
Local Hierarchy

\[\Pi_1^{\text{loc}} \]

\[\text{ITER} \]

\[\text{LD} \]

\[\Pi_1^{\text{co-loc}} \]

\[\text{ITER} \]

\[\text{co-LD} \]

\[\text{AND} \]

\[\text{DIAM}_k \]

\[\text{OR} \]
Local Hierarchy

\[NLD = \Sigma_{2}^{\text{loc}} \]

\[\text{co-NLD} \]

\[\Pi_{1}^{\text{loc}} \]

\[\text{co-} \Pi_{1}^{\text{loc}} \]

\[\text{MISS} \]

\[\text{ALTS} \]

\[\text{TREE} \]

\[\text{ITER} \]

\[\text{LD} \]

\[\text{co-LD} \]

\[\text{AND} \]

\[\text{DIA}_k \]

\[\text{OR} \]

\[\text{AMOS} \]
\(\Pi_2^{loc} \) Class

- \(\Pi_2 \) class: An input instance satisfies a certain property in \(\Pi_2 \) iff
 \[\forall c_1, \exists c_2, \text{ all nodes accept.} \]

- Two party game between a *disprover* and a *prover*.
Exactly Two Selected
Exactly Two Selected
Local Hierarchy

\[
LD \subset \Pi_1^{\text{loc}} \subset NLD = \Sigma_2^{\text{loc}} \subset \Pi_2^{\text{loc}} = \text{All} \quad (\text{all inclusions are strict}).
\]
MISS: a Π^2_{loc}-complete Problem

- Every node u of (G, x) is given a family $\mathcal{F}(u)$ of input instances, each described by
 - An adjacency matrix representing a graph;
 - array representing the inputs to the nodes of that graph.
MISS: a Π^2_{loc}-complete Problem

- Every node u of (G, x) is given a family $F(u)$ of input instances, each described by
 - An adjacency matrix representing a graph;
 - array representing the inputs to the nodes of that graph.
- Every node u has an input string $x'(u) \in \{0, 1\}^*$ (notice that (G, x') is also an input instance).
MISS: a Π_{2}^{loc}-complete Problem

- Every node u of (G, x) is given a family $\mathcal{F}(u)$ of input instances, each described by
 - An adjacency matrix representing a graph;
 - Array representing the inputs to the nodes of that graph.

- Every node u has an input string $x'(u) \in \{0, 1\}^*$ (notice that (G, x') is also an input instance).

- The current (G, x) is legal if (G, x') is missing in all families $\mathcal{F}(u)$ for every $u \in V(G)$.

$$\text{MISS} = \{(G, x) : \forall u \in V(G), x(u) = (\mathcal{F}(u), x'(u)) \text{ and } (G, x') \notin \mathcal{F}\}$$
MISS: a Π^2_{loc}-complete Problem
Each node u with identity $\text{id}(u)$ and input $\text{x}(u)$ computes its width $\omega(u) = 2|\text{id}(u)| + |\text{x}(u)|$.
Reduction to \textsc{miss}

- Each node u with identity $\text{id}(u)$ and input $x(u)$ computes its \textit{width} $\omega(u) = 2|\text{id}(u)| + |x(u)|$.

- Each node u generates $\mathcal{F}(u)$, i.e., all $(H, y) \notin \mathcal{L}$
 - At most $\omega(u)$ nodes;
 - $y(v)$ has value at most $\omega(u)$.
Each node u with identity $\text{id}(u)$ and input $x(u)$ computes its width $\omega(u) = 2|\text{id}(u)| + |x(u)|$.

Each node u generates $\mathcal{F}(u)$, i.e., all $(H, y) \notin \mathcal{L}$
- At most $\omega(u)$ nodes;
- $y(v)$ has value at most $\omega(u)$.

If $(G, x) \in \mathcal{L}$
- $(G, x) \notin \mathcal{F}$ since only illegal instances are in \mathcal{F};
- all nodes will accept.
Reduction to \textsc{miss}

- Each node u with identity $\text{id}(u)$ and input $x(u)$ computes its \textit{width} $\omega(u) = 2|\text{id}(u)| + |x(u)|$.
- Each node u generates $\mathcal{F}(u)$, i.e., all $(H, y) \notin \mathcal{L}$
 - At most $\omega(u)$ nodes;
 - $y(v)$ has value at most $\omega(u)$.
- If $(G, x) \in \mathcal{L}$
 - $(G, x) \notin \mathcal{F}$ since only illegal instances are in \mathcal{F};
 - all nodes will accept.
- If $(G, x) \notin \mathcal{L}$
 - There exists u with $\text{id}(u)$ or $x(u)$ big enough, which guarantees that u generates the graph G, i.e., $(G, x) \in \mathcal{F}(u)$;
 - at least one node will reject.
Open Problems

- **Unbounded size id-independent certificates:**
 - find a complete problem for Π_1^{loc} and $\text{co-}\Pi_1^{\text{loc}}$;
 - find a problem in the intersection between the classes Π_1^{loc} and $\text{co-}\Pi_1^{\text{loc}}$.

- **Bounded size ($O(\log n)$) id-dependent certificates**
 - we don’t know if the hierarchy collapses;
 - there are no separating problems for Σ_2^{loc} and Σ_3^{loc} (neither for classes higher in the hierarchy).
Thank you!