Local Distributed Verification

A. Balliu, G. D’Angelo, P. Fraigniaud, and D. Olivetti

CNRS and University Paris Diderot
GSSI L’Aquila

@ Classify problems according to their difficulty, i.e., build a
complexity theory in the distributed setting.

@ Build a hierarchy of complexity classes in the context of the
LOCAL model.

Model

oe

Local Model

@ The distributed network is represented by a graph.

Model

oe

Local Model

@ The distributed network is represented by a graph.

@ Synchronous model.

Model

oe

Local Model

@ The distributed network is represented by a graph.

@ Synchronous model.

Model

oe

Local Model

@ The distributed network is represented by a graph.

@ Synchronous model.

Model
oe

Local Model

@ The distributed network is represented by a graph.
@ Synchronous model.

@ Equivalent to a model where each node sees the network up to
distance t.

Model
oe

Local Model

@ The distributed network is represented by a graph.

@ Synchronous model.

@ Equivalent to a model where each node sees the network up to
distance t.

@ The time complexity of a local algorithm A is determined by
the range t that it needs to explore.

Model

oe

Local Model

@ The distributed network is represented by a graph.
@ Synchronous model.

@ Equivalent to a model where each node sees the network up to
distance t.

@ The time complexity of a local algorithm A is determined by
the range t that it needs to explore.

@ We want t to be constant.

Local decision
@00

Decision Problems

@ Decision Problems: the aim is to decide whether a global input
instance satisfies some specific property.

Local decision
@00

Decision Problems

@ Decision Problems: the aim is to decide whether a global input
instance satisfies some specific property.

@ Each node:

o gathers its local information from the network;

Local decision
@00

Decision Problems

@ Decision Problems: the aim is to decide whether a global input
instance satisfies some specific property.

@ Each node:

o gathers its local information from the network;
e perform some local computation;

Local decision
@00

Decision Problems

@ Decision Problems: the aim is to decide whether a global input
instance satisfies some specific property.

@ Each node:

o gathers its local information from the network;
e perform some local computation;
e output its local decision:

Local decision
@00

Decision Problems

@ Decision Problems: the aim is to decide whether a global input
instance satisfies some specific property.

@ Each node:

o gathers its local information from the network;
e perform some local computation;
e output its local decision: "accept”

Local decision
@00

Decision Problems

@ Decision Problems: the aim is to decide whether a global input
instance satisfies some specific property.

@ Each node:

o gathers its local information from the network;
e perform some local computation;
e output its local decision: "accept” or "reject”.

Local decision
@00

Decision Problems

@ Decision Problems: the aim is to decide whether a global input
instance satisfies some specific property.

@ Each node:

o gathers its local information from the network;
e perform some local computation;
e output its local decision: "accept” or "reject”.

@ global_output = /\V local_output(v).
ve

Local decision
@00

Decision Problems

@ Decision Problems: the aim is to decide whether a global input
instance satisfies some specific property.

@ Each node:

o gathers its local information from the network;
e perform some local computation;
e output its local decision: "accept” or "reject”.

@ global_output = /\V local_output(v).
ve

Local decision
@00

Decision Problems

@ Decision Problems: the aim is to decide whether a global input
instance satisfies some specific property.

@ Each node:

o gathers its local information from the network;
e perform some local computation;
e output its local decision: "accept” or "reject”.

@ global_output = /\V local_output(v).
ve

Local decision
oeo

Example: Proper Coloring

@ Node input: a color.

@ Each node checks the colors of its neighbors.

»—Reject”

Local decision
oeo

Example: Proper Coloring

@ Node input: a color.

@ Each node checks the colors of its neighbors.

»—Reject”

@ Local Decision (LD) is the class of distributed languages that
can be locally decided [NS '95].

Local decision
ooe

LD Class

LD is the class of all distributed languages L for which there exists a
local algorithm A satisfying the following: for every input instance

(G, x),

(G,x) e L = VideID(G),Yue V(G), A(G, x,id, u) = accept
(G,x) ¢ L = VideID(G),3u e V(G), A(G, x,id, u) = reject

V.

Local verification
@0000

Verification Problems

@ Verification problem: the aim is to verify whether a global
input instance satisfies some specific property.

Local verification
@0000

Verification Problems

@ Verification problem: the aim is to verify whether a global
input instance satisfies some specific property.
@ Each node:

o has a certificate, unbounded size and independent from the id
assignment;

Local verification
@0000

Verification Problems

@ Verification problem: the aim is to verify whether a global
input instance satisfies some specific property.
@ Each node:

o has a certificate, unbounded size and independent from the id
assignment;
o gathers its local information from the network;

Local verification
@0000

Verification Problems

@ Verification problem: the aim is to verify whether a global
input instance satisfies some specific property.
@ Each node:
o has a certificate, unbounded size and independent from the id

assignment;
o gathers its local information from the network;

e perform some local computation;

Local verification
@0000

Verification Problems

@ Verification problem: the aim is to verify whether a global
input instance satisfies some specific property.

@ Each node:
o has a certificate, unbounded size and independent from the id
assignment;
o gathers its local information from the network;
e perform some local computation;
e output its local decision, that is ether accept” or “reject”.

Local verification
@0000

Verification Problems

@ Verification problem: the aim is to verify whether a global
input instance satisfies some specific property.

@ Each node:
o has a certificate, unbounded size and independent from the id
assignment;
o gathers its local information from the network;
e perform some local computation;
e output its local decision, that is ether accept” or “reject”.

@ global_output = /\V local_output(v).
ve

Local verification
@0000

Verification Problems

@ Verification problem: the aim is to verify whether a global
input instance satisfies some specific property.

@ Each node:

o has a certificate, unbounded size and independent from the id

assignment;

o gathers its local information from the network;

e perform some local computation;

e output its local decision, that is ether accept” or “reject”.
@ global_output = A local_output(v).

veVv

@ Similar to PLS, but with id-independent certificates.

Local verification
(o] Jelele]

Example: is the given graph a tree?

@ Not locally decidable, but locally verifiable.

Local verification
(o] Jelele]

Example: is the given graph a tree?

@ Not locally decidable, but locally verifiable.

@ Choose a node to be the root.

Local verification
(o] Jelele]

Example: is the given graph a tree?

@ Not locally decidable, but locally verifiable.
@ Choose a node to be the root.

o Certificate of a node v: its hop-distance from the chosen root.

Local verification
(o] Jelele]

Example: is the given graph a tree?

@ Not locally decidable, but locally verifiable.
@ Choose a node to be the root.

o Certificate of a node v: its hop-distance from the chosen root.

@

Local verification
(o] Jelele]

Example: is the given graph a tree?

@ Not locally decidable, but locally verifiable.
@ Choose a node to be the root.

o Certificate of a node v: its hop-distance from the chosen root.

@

@ Nondeterministic LD (NLD) is the class of distributed languages
that can be locally verified [FKP *11].

Local verification
[e]e] lele}

NLD Class

NLD is the class of all distributed languages L for which there exists
a local algorithm A satisfying the following: for every input
instance (G, x),
e (G,x) € L=3ce(C(G),Vid € ID(G),Vu e V(G),
A(G, x, c,id, u) = accepts
e (Gx)¢ L=Vce(C(G),Vid € ID(G),Ju € V(G),
A(G, x, c,id, u) = rejects

Local verification
[e]e] lele}

NLD Class

NLD is the class of all distributed languages L for which there exists
a local algorithm A satisfying the following: for every input
instance (G, x),
e (G,x) € L=3ce(C(G),Vid € ID(G),Vu e V(G),
A(G, x, c,id, u) = accepts
e (Gx)¢ L=Vce(C(G),Vid € ID(G),Ju € V(G),
A(G, x, c,id, u) = rejects

L € NP if there is a polynomial time algorithm A such that,

x € L <= dcs.t. Aaccepts x with c.

Local verification
[e]e]e] o]

More about NLD

NLD is the class of all problems closed under lift [FKP *11].

@ Let (G, x) and (G, x) be two input instances.

e (G, x')isalift of (G, x) if there exists a function f such that:
f: V(G') = V(G) preserving the local view of each node.

q <>

Local verification
0000e

NLD is Closed Under Lift

@ Let £ be a language in NLD.
e If (G,x) € L N (G, X)isalift of (G, x), then (G, x) € L.
G G’
@ C—=E€2)
@‘ €3) €3)

€ C9—C)

Local Hierarchy
®00000000000

@ Build a hierarchy of complexity classes in the distributed
setting.
@ Distributed hierarchies in other setting:

o [Reiter *14] in the context of automata;
e [FFH ’16] in a model inspired by the CONGEST one.

Local Hierarchy
O®@0000000000

Complexity Classes

@ LD = X[o¢ = [1/¢ (similar to P in the sequential setting).

Local Hierarchy
O®@0000000000

Complexity Classes

@ LD = X[o¢ = [1/¢ (similar to P in the sequential setting).
@ NLD = Xk¢ (similar to NP in the sequential setting).

Local Hierarchy
O®@0000000000

Complexity Classes

@ LD = X[o¢ = [1/¢ (similar to P in the sequential setting).
@ NLD = Xk¢ (similar to NP in the sequential setting).

° Zf("“: An input instance satisfies a certain property in Zf(oc iff

3, Ve, ..., Q. all nodes accept.

Local Hierarchy
O®@0000000000

Complexity Classes

@ LD = X[o¢ = [1/¢ (similar to P in the sequential setting).
@ NLD = Xk¢ (similar to NP in the sequential setting).

° Zf("“: An input instance satisfies a certain property in Zf(oc iff

3, Ve, ..., Q. all nodes accept.

° Hf("cz An input instance satisfies a certain property in H;("C iff

Ver, e, ..., Qek, all nodes accept.

Local Hierarchy
O0@000000000

Complementary Classes

In a class:

A globaly accepted input instance. A globaly rejected input instance.

In a complementary class:

A globaly accepted input instance. A globaly rejected input instance.

Local Hierarchy
O00®@00000000

Lever 0 of the Hierarchy

@ AND : [{u € V(G) : x(u) =1
o or:|{u€e V(C): x(u) =1}

LD co-LD

Local Hierarchy
O000@0000000

I1!¢: The Role of the Last Universal Quantifier

o ITle:
(G, x) € L < Vcall nodes accept.

e LD:
(G, x) € L & all nodes accept

Local Hierarchy
O000@0000000

I1!¢: The Role of the Last Universal Quantifier

o ITle:
(G, x) € L < Vcall nodes accept.

e LD:
(G, x) € L & all nodes accept

@ Problems that can be solved only if a specific node knows (an
upper bound of) the size of the network!

Local Hierarchy

000008000000

@ Let f be a function and a and b two non-negative integers.

Local Hierarchy
000008000000

@ Let f be a function and a and b two non-negative integers.

@ A configuration in ITER consists in a path P = LvR with a
special node v (pivot).

Local Hierarchy

000008000000

@ Let f be a function and a and b two non-negative integers.

@ A configuration in ITER consists in a path P = LvR with a
special node v (pivot).

@ Nodes in L (resp., in R) are given as input £, f'(a) (resp.,
f.f(b)); to v is given in input £, a, b.

fo o %@ o o ffo @ f@ fab fO) fAb) b)

Local Hierarchy
000008000000

@ Let f be a function and a and b two non-negative integers.

@ A configuration in ITER consists in a path P = LvR with a
special node v (pivot).

@ Nodes in L (resp., in R) are given as input £, f'(a) (resp.,
f.f(b)); to v is given in input £, a, b.

@ fisst. f(0) =0and f(1) =1

fo o %@ o o ffo @ f@ fab fO) fAb) b)

Local Hierarchy
000008000000

@ Let f be a function and a and b two non-negative integers.

@ A configuration in ITER consists in a path P = LvR with a
special node v (pivot).
@ Nodes in L (resp., in R) are given as input £, f'(a) (resp.,
f.f(b)); to v is given in input £, a, b.
@ fisst. f(0) =0and f(1) =1
@ An input instance is in ITER if and only if:
o fltl(a) € {0,1} and fIRI(b) € {0, 1}
o fltl(a) =0 or fIRI(b) =0

fo o %@ o o ffo @ f@ fab FO) fAb) b)

Local Hierarchy

000000800000

@ An endpoint node rejects only if it has in input something
different from 1 or 0; otherwise accepts.

@ In this case, the left endpoint node rejects.

Local Hierarchy

000000800000

O—0O0—C0O0—® O—0—0O0—0-0

fo @ f@ ffo o o ff@ fo fub fO) FAb)))

f(7)=6

RSH
&

@ Nodes reject if they notice local inconsistencies.

Local Hierarchy
000000800000

ffa o ff@ @ o o o fo fab fO) fA0) fAb) f40)

o (G,x) ¢ L = Jcs.t. at least one node rejects.
o v rejects only if fltl(a) = fIRI(b) = 1; otherwise accepts.
@ Certificate of node v: un upper bound of the size of the

network.

Local Hierarchy

000000800000

o (G, x) € L = Vcs.t. all nodes accept.

@ Whatever certificate v has, it will never compute

£ (a) = £ (b) = 1.

Local Hierarchy
O000000e0000

Local Hierarchy

Local Hierarchy
O0000000e000

Local Hierarchy

NLD = Xl* co-NLD

Local Hierarchy
000000000800

@ I, class: An input instance satisfies a certain property in I'L, iff
V¢, deo, all nodes accept.

@ Two party game between a disprover and a prover.

Exactly Two Selected

Exactly Two Selected

Exactly Two Selected

Local Hierarchy
00000000000 e

Local Hierarchy

LD C [T € NLD = xk¢ C TT¥° = All (all inclusions are strict).

Complete Problems
[ele}

miss: a I1°-complete Problem

@ Every node u of (G, x) is given a family F (u) of input
instances, each described by

@ An adjacency matrix representing a graph;
e array representing the inputs to the nodes of that graph.

o0

Complete Problems
[ele}

miss: a I1°-complete Problem

@ Every node u of (G, x) is given a family F (u) of input
instances, each described by
@ An adjacency matrix representing a graph;
e array representing the inputs to the nodes of that graph.
@ Every node u has an input string x'(u) € {0, 1}* (notice that
(G, x') is also an input instance).

Complete Problems
[ele}

miss: a I1°-complete Problem

@ Every node u of (G, x) is given a family F (u) of input
instances, each described by
e An adjacency matrix representing a graph;
e array representing the inputs to the nodes of that graph.
@ Every node u has an input string x'(u) € {0, 1}* (notice that
(G, x') is also an input instance).
@ The current (G, x) is legal if (G, x) is missing in all families
F(u) for every u € V(G).

miss = {(G, x) : Vu € V(G),x(u) = (F(u),x'(u)) and (G, x') ¢ F}

Complete Problems
(o] lo}

miss: a I1°-complete Problem

Complete Problems
ooe

Reduction to miss

@ Each node u with identity id(u) and input x(u) computes its
width w(u) = 2[dWI+Ix(w)],

Complete Problems
ooe

Reduction to miss

@ Each node u with identity id(u) and input x(u) computes its
width co(u) — 21800 1x(0)]
@ Each node u generates F(u),i.e,all (H,y) ¢ L

e At most w(u) nodes;
o y(v) has value at most w(u).

Complete Problems
ooe

Reduction to miss

@ Each node u with identity id(u) and input x(u) computes its
width w(u) = 2[dWI+Ix(w)],
@ Each node u generates F(u),i.e,all (H,y) ¢ L
e At most w(u) nodes;
o y(v) has value at most w(u).
o If (Gx)e L
o (G,x) ¢ F since only illegal instances are in F;
e all nodes will accept.

Complete Problems
ooe

Reduction to miss

Each node u with identity id(u) and input x(u) computes its
width co(u) — 21800 1x(0)]
@ Each node u generates F(u),i.e,all (H,y) ¢ L

e At most w(u) nodes;
o y(v) has value at most w(u).

o If (Gx)e L
o (G,x) ¢ F since only illegal instances are in F;
e all nodes will accept.

e If (Gx) ¢ L

o There exists u with id(u) or x(u) big enough, which guarantees
that u generates the graph G, i.e., (G, x) € F(u);
o at least one node will reject.

Conclusions
[le]

Open Problems

@ Unbounded size id-independent certificates:
o find a complete problem for IT'¢ and co-TT\°¢;
o find a problem in the intersection between the classes TT'¢ and
co-TTe,
@ Bounded size (O(log n)) id-dependent certificates
o we don’t know if the hierarchy collapses;
o there are no separating problems for Z'ZOC and ZI3°C (neither for
classes higher in the hierarchy).

Thank you!

	Model
	Local decision
	Local verification
	Local Hierarchy
	Complete Problems
	Conclusions

